CombiCODER with speed, vibration and temperature measurement

Technical information

Description

The **CombiCODER** is an advanced sensor that has been specially developed for Condition Monitoring applications in railway vehicles. The speed sensor combines several important functions in a compact housing that resembles that of a conventional speed sensor.

Besides the proven speed signals already familiar from the GEL 2475 series, the **CombiCODER** GEL 2475CM offers additional measuring options. The installation site can remain the same. However, acceleration signals are also recorded in three axes and the temperature is measured. This significantly increases the efficiency and reliability of Condition Monitoring without any additional effort.

Features

- Vibration measurement up to 2.4 kHz in 3 axes with analog signal output
- Electrically isolated speed signals for supply of anti-skid protection, traction monitoring, Automatic Train Protection, etc. without feedback
- in accordance with DIN EN 50155:2022-06

Sensor combinatorics with analog interface

- Speed measurement by magnetic scanning
- Vibration measurement by MEMS device in 3 axes
- Temperature monitoring by Pt-1000

Advantages

- Current output signals insensitive to electro-magnetic interference fields
- Cable break monitoring via current output or voltage output with standstill voltage
- Easy to install due to large measuring distance

Field of application

- Rail vehicle industry
 - Traction monitoring, Anti-slip protection, Motor speed, Wheel slide protection, Automatic Train Protection, Odometry
- Condition monitoring in rail vehicles
 - Detection of vibrations in up to 3 axes with 2.4 kHz bandwidth

Do you have special requirements regarding flange shape, shaft length, number of channels, cable protection, cable outlet, connector assembly or EMC concept?

Talk to us. Our experts can design the optimal solution for your application from an extensive modular system and will be pleased to advise you how to customize your solution in the most cost-efficient way.

Write to support@lenord.de or call +49 208 9963-215.

Right to technical changes and errors reserved.

Internet: www.lenord.com E-Mail: info@lenord.de Phone: +49 208 9963–0

D-01T-2475CM

Lenord, Bauer & Co. GmbH Dohlenstraße 32 46145 Oberhausen, Germany

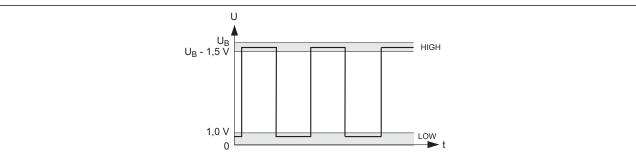
GEL 2475CM

Version 2024-11-05

Technical data

Signal pattern	E-	V-	EM	VM		
Electrical data		1		- I		
Supply voltage U _B (reverse polarity protected)	10 to 30 V DC		10 to 20 V DC	10 to 20 V DC		
Current consumption I _B (without load)	≤ 30 mA ≤ 12 mA per channel					
Output signal (short-circuit-proof)	Square-wave sig	jnals				
Output signal level High ⁽¹⁾	≥ U _B - 1.5 V		≥ U _B - 1.8 V			
Output signal level Low ⁽¹⁾	≤ 1.0 V		≤ 1.5 V			
Output current per channel	≤ 20 mA		≤ 10 mA			
Frequency range	0 kHz to 20 kHz		0 kHz to 8 kHz			
Duty cycle	50 % ± 10 % ⁽²⁾		·			
Phase offset	-	typ. 90°	-	typ. 90°		
Electrical data VIB signal						
Supply voltage U _B (reverse polarity protected)	10 to 30 V DC					
Technical data MEMS device	(see Page 5)					
Electrical data Pt1000 temperature senso	r					
Measuring current	1 mA					
Measuring range	-50 °C to +130 °	-50 °C to +130 °C				
Measurement tolerance	Accuracy class I	3				
Mechanical data						
Sensor tube material	Stainless steel					
Flange material	Stainless steel					
Sensor weight (incl. 2 m cable)	approx. 500 g					
Environmental testing						
Working and operating temperature	-40 °C to +120 °	С				
Storage temperature	-40 °C to +120 °	С				
Dielectric strength	500 V AC/750 V	DC (DIN EN 50)155:2022-06)			
Electromagnetic compatibility ⁽³⁾	DIN EN 50121-3	-2:2017-11; DIN	NEN 50121-3-2/A1:2	2020-11		
Degree of protection on measuring side ⁽⁴⁾	IP 68					
Vibration resistance	DIN EN 61373:2011-04 cat. 3					
Shock resistance	DIN EN 61373-2011-04 cat. 3					
MTTF value	2,000,000 h at 5	5 °C				

 ⁽¹⁾ depending on output current and temperature
 (2) applies to operation with nominal air gap and toothing as per DIN 867
 (3) Observe EMC notes in the mounting/operating instructions


⁽⁴⁾ Degree of protection on the cable outlet side depends on cable gland or cable protection

Output signals and connection

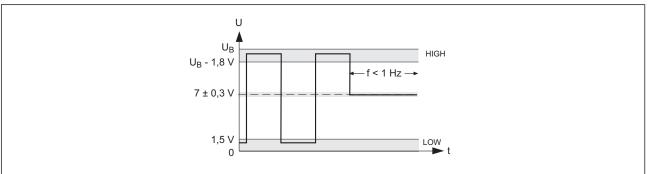
Signal pattern for voltage output (E-, V-)

	Output signals	Supply voltage	Pulse diagram
E-	1-channel square-wave signal	10 to 30 V DC	
V-	2-channel square-wave signals with 90° phase offset	10 to 30 V DC	

Output signal level - voltage output (E-, V-)

Assignment – voltage output (E-, V-)

Cable 1						
Signal	E-	V-				
Rotational speed channel 1	YE	YE				
Rotational speed channel 2		WH				
GND (0 V)	BU	BU				
+U _B	RD	RD				
PT+	BN	BN				
PT-	ВК	ВК				
Cables/Screens	1/1	1/1				
Cable 2	·					
Signal	E-	V-				
VIB x axis	YE	YE				
VIB y axis	WH	WH				
VIB z axis	ВК	ВК				
VIB GND (0 V)	BU	BU				
VIB +U _B	RD	RD				
Cables/Screens	1/1	1/1				


Cable screen is connected directly or, as an option, capacitively in the sensor (see type code, others upon request) Core identifier: **BK** black, **BN** brown, **BU** blue, **GY** gray, **PK** pink, **RD** red, **WH** white, **YE** yellow

Output signals and connection

Signal pattern with standstill voltage (EM, VM)

Out	put signals	Supply voltage	Pulse diagram
ЕМ	1-channel square-wave signal and standstill voltage	10 to 20 V DC	7V<1 Hz
VM	2-channel square-wave signals with 90° phase and standstill voltage	10 to 20 V DC	7V 1 7V 1 7V 7V 7V 7V 7V 7V 2

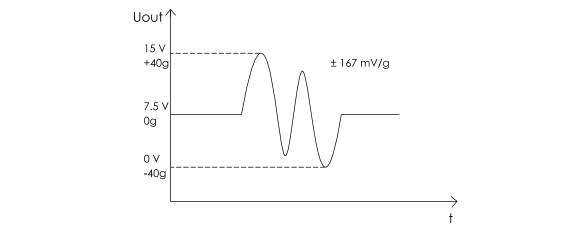
Output signal level - voltage output (EM, VM)

Assignment – voltage output (EM, VM)

Cable 1						
Signal	EM	VM				
Rotational speed channel 1	YE	YE				
Rotational speed channel 2		WH				
GND (0 V)	BU	BU				
+U _B	RD	RD				
PT+	BN	BN				
PT-	ВК	BK				
Cables/Screens	1/1	1/1				
Cable 2	·					
Signal	EM	VM				
VIB x axis	YE	YE				
VIB y axis	WH	WH				
VIB z axis	ВК	BK				
VIB GND (0 V)	BU	BU				
VIB +U _B	RD	RD				
Cables/Screens	1/1	1/1				

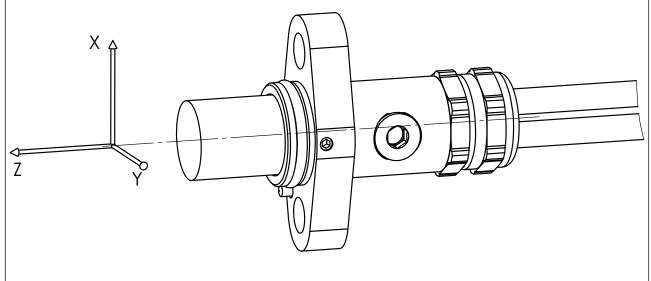
Core identifier: BK black, BN brown, BU blue, GY gray, PK pink, RD red, WH white, YE yellow

Vibration sensor (MEMS device)


Technical data

MEMS device	
Acceleration range	±40 g
Total bandwidth	2.4 kHz
Resonant frequency	5.5 kHz
Non-linearity	1.3% FSR
Measuring sensitivity	167 mV/g

Functionality of MEMS device


A MEMS device is installed in the sensor for vibration and acceleration measurement.

The MEMS devices consist of tiny, comb-shaped fingers made of silicon that interlock. In the event of a sudden change in pulse or movement, the combs are pushed against each other. This changes the distance between the fingers, which has an effect on the electrical voltage. This change can be measured and converted into an electrical signal that is transmitted by the sensor.

Reference system for installation

The directional axes of the measured vibrations depend on the installation position of the sensor and are defined as follows:

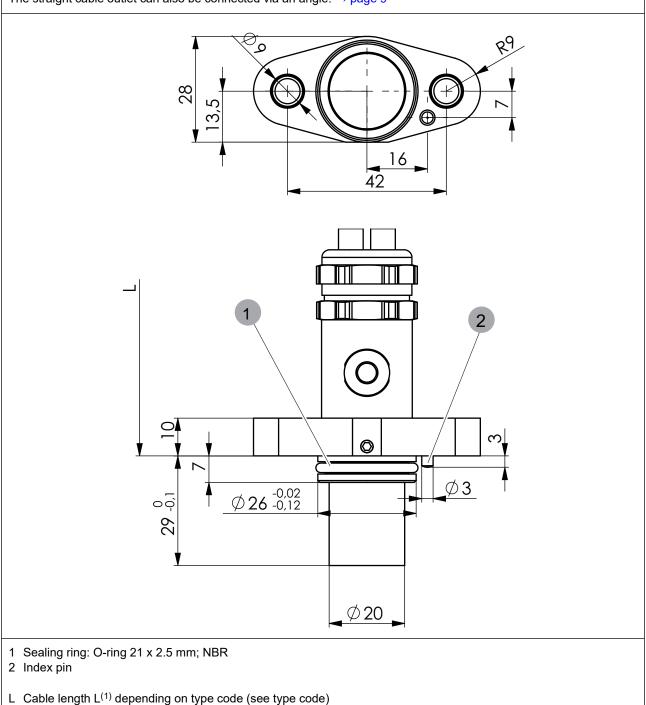
Target wheel

Requirements for the target wheel						
Material	Ferromagnetic steel					
Tooth form	 Involute gear teeth in accordance with DIN 867 (see type code) Square gear teeth (see type code) 					
Width	≥ 15 mm (smaller upon request)					
Module m	The standard module size is 2.00. Others upon request.					
Air gap (nominal air gap)	0.2 to1.5 mm (0.7 mm)					

Screening concept

Selection of screen connection (see type code, others available on request)	Screen connection at encoder housing						
Option S1	Both cables connected directly						
Option S2	Cable 1 (speed) connected capacitively Cable 2 (VIB) connected directly						
Despite the high electromagnetic immunity integration into a companing concert is required for the concerts ensure							

Despite the high electromagnetic immunity, integration into a screening concept is required for the sensor to ensure EMC stability.

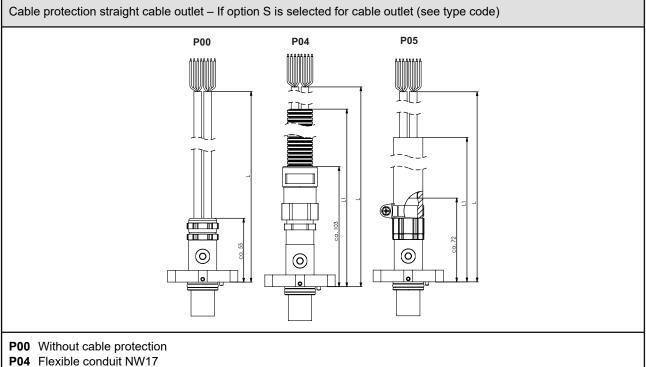

• Should the electromagnetic environment require special screening concepts, Lenord+Bauer offers support based on extensive knowledge and experience in integrating the sensor into the screening concept of the application.

① Observe EMC notes in the relevant documents.

Cable outlet straight Option S (see type code)

The straight cable outlet can also be connected via an angle: \rightarrow page 9

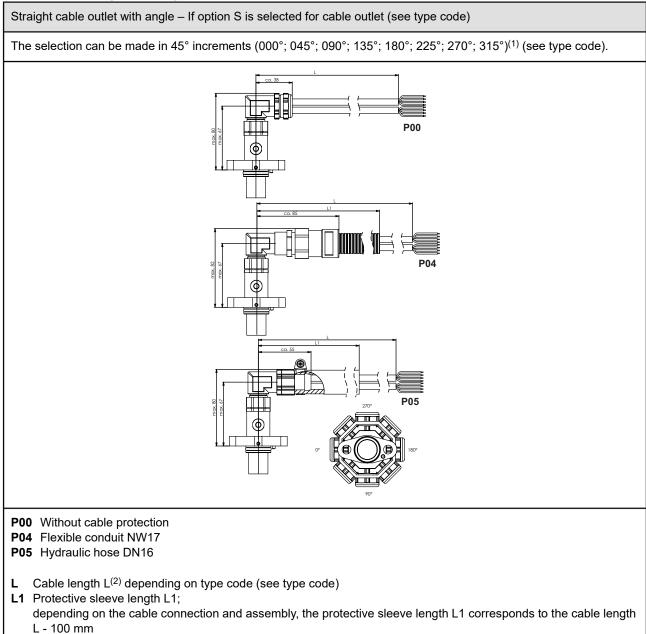
⁽¹⁾ Tolerance ± 50 mm


Cable protection at cable outlet

The GEL 2475CM can be equipped with different types of cable protection at the cable outlet as required.								
Selection P00 Without cable protection								
Selection P04	Flexible conduit NW17							
Selection P05 Hydraulic hose DN16								

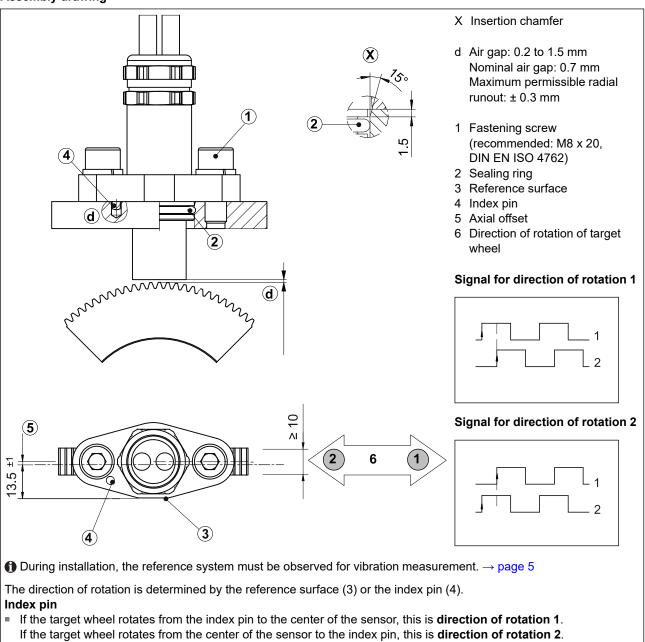
Technical data for cable protection

Option	P00	P04	P05
Туре	2 cables: $6 \times 0.5 \text{ mm}^2$	Flexible conduit NW17	Hydraulic hose DN16
Material	halogen-free ⁽¹⁾	Polyamid, halogen-free	Rubber compound
Outside diameter	6.5 ± 0.3 mm	21.1 mm	24.9 mm
Minimum bending radius	20 mm (static) 33 mm (dynamic)	35 mm (static) 85 mm (dynamic)	90 mm


Cable outlet straight

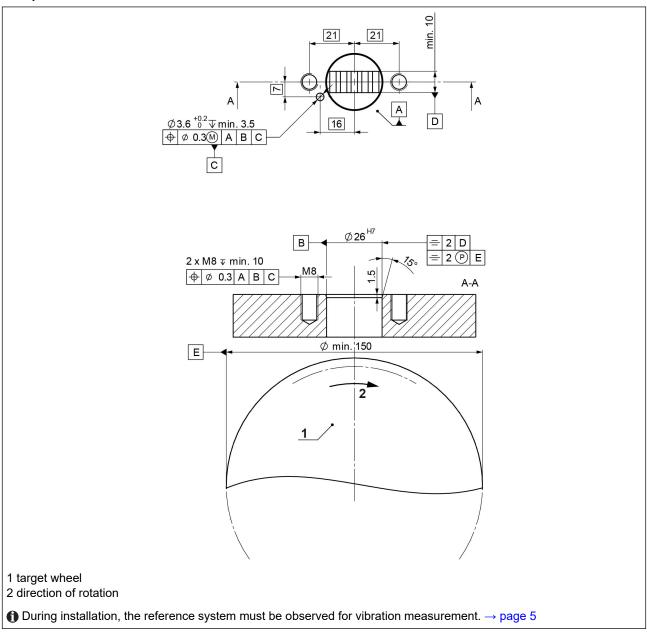
- P04 Flexible conduit NVV1/
- **P05** Hydraulic hose DN16
- L Cable length L⁽²⁾ depending on type code (see type code)
- L1 Protective sleeve length L1;
 - depending on the cable connection and assembly, the protective sleeve length L1 corresponds to the cable length L 100 mm

⁽²⁾ Tolerance ± 50 mm


- Cable outlet straight with angle

⁽¹⁾ Tolerance ± 10°

⁽²⁾ Tolerance ± 50 mm


Assembly drawing

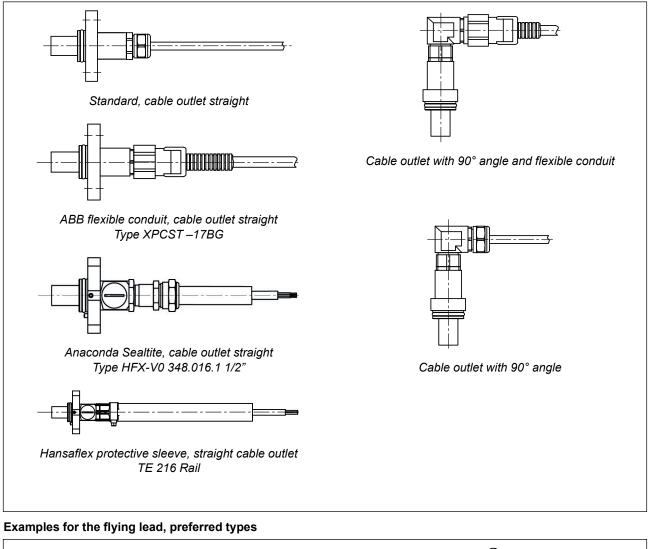
Reference surface

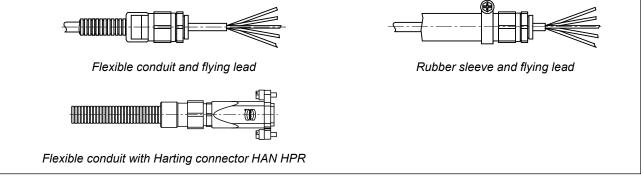
If the target wheel rotates clockwise with view to the reference surface, this is direction of rotation 1.
If the target wheel rotates counterclockwise with view to the reference surface, this is direction of rotation 2.

Type code GEL 2475CM

Type code GEL 2475CM

r									
		Signal pattern							
E·		1-channel square-wave signal							
V-		2-channel square-wave signals with 90° phase offset							
EN	VI 1-cł	-channel square-wave signals and standstill voltage							
V	VI 2-ch	channel square-wave signals with 90° phase and standstill voltage							
		Screen connection ⁽¹⁾							
	S1	Both o	Both cables connected directly						
	S2	Cable	1 (speed) conn	ected capacitively			
						ted directly			
			M	odule i	m ⁽²⁾				
		M05	m	= 2.00	, steel	, involute			
		M16	m	= 2.00	, steel	, rectangular			
				Cable	outle	t			
			S	Cable	outlet	straight			
				An	gle				
				0 with	nout a	ngle			
				1 with	h angle	e, 0 degrees			
				2 with	2 with angle, 45 degrees				
				3 with angle, 90 degrees					
				4 with	h angle	e, 135 degrees			
				5 with	h angle	e, 180 degrees			
				6 with	h angle	e, 225 degrees			
				7 with	h angle	e, 270 degrees			
				8 with	h angle	e, 315 degrees			
					Ca	ble protection			
			P00 without						
			P04 Flexible conduit NW17						
			P05 Hydraulic hose DN16						
			Cable length L						
			L2 2000 mm						
					L3	3000 mm			
					L4	4000 mm			
2475CM			_			-			


Note: A Y-number is assigned for a customer-specific special version. A special design GEL 2475CMYxxx is manufactured according to drawing or application description.


 $^{^{(1)}}$ $\,$ Other screen connections upon request

⁽²⁾ Other modules upon request

We can manufacture according to your specifications:

Examples for the sensor side, preferred types

Examples

	PIN	E-	V-	EM	VM
	1	VIB x axis	VIB x axis	VIB x axis	VIB x axis
	2	VIB +U _B	VIB +U _B	VIB +U _B	VIB +U _B
	3	GND (0 V)	GND (0 V)	GND (0 V)	GND (0 V)
	4	Rotational speed channel 1	Rotational speed channel 1	Rotational speed channel 1	Rotational speed channel 1
080	5	VIB z axis	VIB z axis	VIB z axis	VIB z axis
	6	VIB y axis	VIB y axis	VIB y axis	VIB y axis
	7	-	Rotational speed channel 2	-	Rotational speed channel 2
	8	+U _B	+U _B	+U _B	+U _B
	9	VIB GND (0 V)	VIB GND (0 V)	VIB GND (0 V)	VIB GND (0 V)
	10	PT+	PT+	PT+	PT+
	11				
	12	PT-	PT-	PT-	PT-

Assignment Harting connector HAN HPR, preferred type

If you decide to have our speed sensors assembled with cable protection and connectors, we recommend using the preferred types shown in the figure. The required materials are field-tested in large quantities and are always in stock. This guarantees the fastest delivery times with the best material availability and the lowest prices due to large purchasing volumes.

If you need help in finding the product you need, please contact our internal sales team at support@lenord.de or call +49 208 9963-215.

Your notes

This document and contents are the intellectual property of Lenord, Bauer & Co. GmbH. Without the written consent of Lenord, Bauer & Co. GmbH, the disclosure and forwarding to third parties as well as any exploitation of the contents, including the registration of intellectual property rights, is prohibited.

Dohlenstraße 32 46145 Oberhausen Germany Phone +49 (0)208 9963-0 www.lenord.de

Lenord, Bauer & Co. GmbH

Lenord+Bauer Italia S.r.l. Via Gustavo Fara, 26 20124 Milano Italy Phone +39 340 1047184 www.lenord.com

Lenord+Bauer USA Inc. 32000 Northwestern Highway Suite 150 Farmington Hills, MI 48334 USA Phone +1 248 446 7003 www.lenord.com Lenord+Bauer Automation Technology (Shanghai) Co.,Ltd. Block 42, Room 302, No.1000, Jinhai Road 201206 Shanghai China Phone +86 21 50398270 www.lenord.cn