CombiCODER with integrated flat spot detection

Technical information

Version 2024-08-13

GEL 2475FD

Description

The **CombiCODER** combines the already familiar speed signals based on the tried and tested interference-resistant magnetic scanning with state-of-the-art MEMS technology. The two systems discussed use supply voltages that are independent of one another and entirely without feedback.

The flat spot detector accurately identifies flat spots and welds on the wheel and indicates the severity in clear, defined phases. This means that workshop visits can be planned early and efficiently without causing disruption to operational processes. If several flat spot detectors are used, rail joints can also be detected.

Temperature measurement is using an integrated NTC Thermistor.

Thanks to the compatible sensor housing, existing speed sensors can be replaced with the GEL 2475FD with minimal effort. The flat spot detector signal output is an analog PWM signal with HTL output levels. It can be read with conventional analog input stages.

Advantages

- Replaces existing speed sensors with compatible housing
- Simple evaluation through analog pulse-width modulated signal
- Flat spot detection works regardless of the installation position of the sensor housing on the vehicle.
- When retrofitting existing control systems, they continue to be supplied with the necessary, independent speed signals.
- Insulation coordination and development in accordance with EN50155

Field of application

- Rail vehicle industry
 - Traction monitoring
 - Anti-slip protection
 - Motor speed
 - Wheel slide protection
 - Automatic Train Protection
 - Odometry

Do you have special requirements regarding flange shape, shaft length, number of channels, cable protection, cable outlet, connector assembly or EMC concept?

Talk to us. Our experts can design the optimal solution for your application from an extensive modular system and will be pleased to advise you how to customize your solution in the most cost-efficient way.

Write to support@lenord.de or call +49 208 9963-215.

Lenord, Bauer & Co. GmbH Dohlenstraße 32 46145 Oberhausen, Germany

Technical data

Signal pattern for speed system	E-	V-	EM	VM			
Electrical data speed system			I				
Supply voltage U _B (reverse polarity protected)	10 to 30 V DC		10 to 20 V DC	10 to 20 V DC			
Current consumption I _B (without load)	load) \leq 30 mA \leq 12 mA per channel						
Output signal (short-circuit-proof)	-proof) Square-wave signals						
Output signal level High ⁽¹⁾	$\geq U_{\rm B} - 1.5 \rm V$ $\geq U_{\rm B} - 1.8 \rm V$						
Output signal level Low ⁽¹⁾	≤ 1.0 V		≤ 1.5 V				
Output current per channel	≤ 20 mA		≤ 10 mA				
Frequency range	0 to 20 kHz	0 to 20 kHz	0 to 8 kHz				
Duty cycle	50 % ± 10 % ⁽²⁾	1					
Phase offset	-	typ. 90°	-	typ. 90°			
Electrical data PWM signal		1		•			
Supply voltage U _B (reverse polarity protected)	10 to 30 V DC						
Output signal level High ⁽¹⁾	≥ - 1.5 V						
Output signal level Low ⁽¹⁾	≤ 1.0 V						
Output current	≤ 20 mA						
Frequency	1 kHz						
Electrical data NTC Thermistor	1						
Measuring resistor	1 to 100 kOhm a	t 25 °C					
Measuring range	-55 °C to +70 °C (max. 100 mW) -55 °C to +150 °C (max. 1 mW)						
Measuring tolerance	1 % at 25 °C						
Mechanical data	•						
Sensor tube material	Stainless steel						
Flange material	Stainless steel						
Sensor weight (incl. 2 m cable)	approx. 500 g						
Environmental tests							
Working and operating temperature	-40 °C to +120 °C	0					
Storage temperature	-40 °C to +120 °C	0					
Dielectric strength	500 V AC/750 V	DC (DIN EN 5015	5:2022-06)				
Electromagnetic compatibility ⁽³⁾	DIN EN 50121-3	-2:2017-11; DIN E	N 50121-3-2/A1:20	020-11			
Degree of protection on measuring side ⁽⁴⁾	IP 68						
Vibration resistance	DIN EN 61373:2	011-04 cat. 3					
Shock resistance	DIN EN 61373-2011-04 cat. 3						
MTTF value (rotational speed)	2,000,000 h at 5	5 °C					
MTTF value (flat spot)	950,000 h at 55 °	°C					

 ⁽¹⁾ depending on output current and temperature
 (2) applies to operation with nominal air gap and toothing as per DIN 867
 (3) Observe EMC notes in the mounting/operating instructions

 $^{^{(4)}}$ Degree of protection on the cable outlet side depends on cable gland or cable protection

Output signals and connection

Signal pattern for voltage output (E-, V-)

	Output signals	Supply voltage	Pulse diagram
E-	1-channel square-wave signal	10 to 30 V DC	
V-	2-channel square-wave signals with 90° phase offset	10 to 30 V DC	

Output signal level - voltage output (E-, V-)

Assignment - voltage output (E-, V-)

Signal	E-	V-					
Rotational speed channel 1	YE	YE					
Rotational speed channel 2		WH					
GND (0 V)	BU	BU					
+U _B	RD	RD					
PWM U _B	PK	PK					
PWM GND	GY	GY					
PWM flat spot	BK	ВК					
PWM rail joint	BN	BN					
NTC+	RD-BU	RD-BU					
NTC-	PK-BU	PK-BU					
Cables/Screens	1/1	1/1					
Cable screen is connected directly or, as an option, capacitively in the sensor Core identifier: BK black, BN brown, BU blue, GY gray, PK pink, RD red, WH white, YE yellow							

Output signals and connection

Signal pattern with standstill voltage (EM, VM)

Out	put signals	Supply voltage	Pulse diagram
ЕМ	1-channel square-wave signal and standstill voltage	10 to 20 V DC	7V<1 Hz
VM	2-channel square-wave signals with 90° phase offset and standstill voltage	10 to 20 V DC	7V 1 7V 7V 7V 7V 7V 2

Output signal level - voltage output (EM, VM)

Assignment – voltage output (EM, VM)

Signal	EM	VM					
Rotational speed channel 1	YE	YE					
Rotational speed channel 2		WH					
GND (0 V)	BU	BU					
+U _B	RD	RD					
PWM U _B	РК	РК					
PWM GND	GY	GY					
PWM flat spot	ВК	ВК					
PWM rail joint	BN	BN					
NTC+	RD-BU	RD-BU					
NTC-	PK-BU	PK-BU					
Cables/Screens	1/1	1/1					
Cable screen is connected directly or, as an option, capacitively in the sensor Core identifier: BK black, BN brown, BU blue, GY gray, PK pink, RD red, WH white, YE yellow							

Functionality of flat spot detector

Periodically occurring shock loads are already evaluated internally and output at the corresponding sensor output as a pulse-width modulated (PWM) signal with a basic frequency of 1 kHz. The duty cycle of the PWM signal corresponds to the degree of severity of the flat spot. The current vehicle speed does not permit evaluation or the measured values are Duty cycle of 10 % (±4 %) too low to be able to make a statement. The current vehicle speed is within the permissible evaluation window. Duty cycle of 20 % (±4 %) There are no signs of a flat spot. The current vehicle speed is within the permissible evaluation window. A flat spot is detected: 30 % Lower threshold - slight flat spot to Duty cycle of 30 % to 80 % (±4 %) 80 % Upper threshold - very severe flat spot The threshold values for 'light' and 'severe' can be customized for each customer, as the installation location (sprung/unsprung) has a significant effect on the measured intensity. An error status is signaled. Duty cycle of 90 % (±4 %) The flat spot detector has detected an internal hardware problem.

Rail joint function (when using several flat spot detectors)

When several flat spot detectors are used, bumps that do not occur on a regular basis but rather sequentially over the measuring section, such as track joints, can be recorded. An additional PWM output is available for this purpose.							
Duty cycle below 20 % (±4 %) The current vehicle speed does not permit evaluation or the measured value too low to be able to make a statement.							
	The current vehicle speed is within the permissible evaluation window. A rail joint is detected: 20 % Lower threshold - slight rail joint						
Duty cycle of 20 % to 80 % (±4 %)	to 80 % Upper threshold - very severe rail joint						
	The threshold values for 'light' and 'severe' can be customized for each customer, as the installation location (sprung/unsprung) has a significant effect on the mea- sured intensity.						
Duty cycle of 90 % (±4 %)	An error status is signaled. The flat spot detector has detected an internal hardware problem.						

Target wheel

Requirements for the target wheel						
Material	Ferromagnetic steel					
Tooth form	Involute gear teeth as per DIN 867 (see type code)Square gear teeth (see type code)					
Width	≥ 15 mm (smaller upon request)					
Module m	The selection can be made in 0.25 increments from 1.00 to 3.50 (see type code).					
Air gap (nominal air gap)	0.2 to 1.5 mm (0.7 mm)					

Screening concept

Selection of screen connection	Screen connection at encoder housing
Option SD - connected directly (see type code)	Directly connected to sensor housing
Option SC - connected capacitively (see type code)	Connected capacitively to the sensor housing
Option SI - insulated to the housing (see type code)	insulated to the housing

Despite the high electromagnetic immunity, integration into a screening concept is required for the sensor to ensure EMC stability.

• Should the electromagnetic environment require special screening concepts, Lenord+Bauer offers support based on extensive knowledge and experience in integrating the sensor into the screening concept of the application.

1 Observe EMC notes in the relevant documents.

- Cable outlet straight with angle

Cable outlet at side with angle

⁽¹⁾ Tolerance ± 10°

⁽²⁾ Tolerance ± 50 mm

Cable protection at cable outlet

The GEL 2475FD can be equipped with different types of cable protection at the cable outlet as required.						
 Dimensional drawings for straight cable outlet: → page 9 Dimensional drawings for cable outlet at side: → page 10 						
Selection P00 Without cable protection						
Selection P02 Flexible conduit NW12						
Selection P03 Hydraulic hose DN12						

Technical data for cable protection

Option	P00	P02	P03
Туре	12 × 0.34 mm ²	Flexible conduit NW12	Hydraulic hose DN12
Material	halogen-free ⁽¹⁾	Polyamid, halogen-free	Rubber compound
Outside diameter	8.0 ± 0.3 mm	15.8 mm	20.0 mm
Minimum bending radius	24 mm (static) 40 mm (dynamic)	35 mm (static) 80 mm (dynamic)	70 mm

Cable outlet straight

(1) Specification upon request

(2) Tolerance ± 50 mm

Cable outlet at side

⁽¹⁾ Tolerance ± 50 mm

Cable outlet at side with angle

Assembly drawing

The direction of rotation is determined by the reference surface (3) or the index pin (4). **Index pin**

- If the target wheel rotates from the index pin to the center of the sensor, this is direction of rotation 1. If the target wheel rotates from the center of the sensor to the index pin, this is direction of rotation 2. Reference surface
- If the target wheel rotates clockwise with view to the reference surface, this is direction of rotation 1.
 If the target wheel rotates counterclockwise with view to the reference surface, this is direction of rotation 2.

Type code GEL 2475

Type code GEL 2475

		Signal pattern										
	E-	1-ch	annel	annel square-wave signal								
	V-	2-ch	-channel square-wave signals with 90° phase offset									
	FM	1-ch	annel	sau	are-wa	ive sic	inal and	t standstill voltage				
	VM	2-ch	annel	san	are-w	ive sic	inals wi	th 90° phase offset and standstill voltage				
	• •••		Scree	n c		tion						
		SD	conne	n o	d direc	tlv						
		50	conne		d cana	uy citival						
		90	incula	tod	to tho	boucir	y Da					
		31	IIISula	Ma		nousii	iy					
			N/04	IVIO		1						
				m=	· 1.00,	steel,	involute	3				
			WU2	m=	· 1.25,	steel,		9				
			M03	m=	· 1.50,	steel,	involute	9				
			M04	m=	: 1./5,	steel,	Involute	9				
			M05	m=	= 2.00, steel, involute							
			M06	m=	ı= 2.25, steel, involute							
			M07	m=	: 2.50,	steel,	involute	9				
			M08	m=	: 2.75,	steel,	involute	9				
			M09	m=	: 3.00,	steel,	involute	9				
			M10	m=	: 3.25,	steel,	involute	e				
			M11	m=	: 3.50,	steel,	involute	e				
			M12	m=	: 1.00,	steel,	rectang	gular				
			M13	m=	: 1.25,	steel,	rectang	gular				
			M14	m=	: 1.50,	steel,	rectang	gular				
			M15	m=	: 1.75,	steel,	rectang	gular				
			M16	m=	2.00,	steel,	rectan	gular				
			M17	m=	2.25,	steel,	rectan	gular				
			M18	m=	2.50,	steel,	rectan	gular				
			M19	m=	2.75,	steel,	rectan	gular				
			M20	m=	: 3.00. steel, rectangular							
			M21	m=	3.25, steel, rectangular							
			M22	m=	= 3.50, steel, rectangular							
					Cable outlet							
				s	S Cable outlet straight							
				L	Cable outlet at side							
				Г	An	ale						
					0 with	out ai	nale					
					1 with	andle	• 0 dec	iree				
					2 with	andle	• 45 de	aree				
					3 with	andle	90 de	paree				
					4 with	andle	135 c	learee				
					5 with	angle	2, 100 c	legree				
					6 with	angio	2, 100 C	legree				
					7 with	angio	, 220 C	legree				
					Q with	angio	5, 210 C	logroo				
				8 with angle, 315 degree								
					Cable protection							
					POU WILLIOUL DO2 Flovible conduit NIM(12)							
					PUZ FIEXIDIE CONDUIT NW12							
					P0							
						Cable length L						
							L2 2000 mm					
						L3	3000	mm				
						L4	4000	mm				
								larget wheel				
							XXX	Number of the target wheel teeth				
2475FD				_		_						

Note: A Y-number is assigned for a customer-specific special version. A special design GEL 2475FDYxxx is manufactured according to drawing or application description.

We can manufacture according to your specifications:

Examples for the sensor side, preferred types

Examples

PIN	E-	V-	EM	VM
1	PWM flat spot	PWM flat spot	PWM flat spot	PWM flat spot
2	PWM GND	PWM GND	PWM GND	PWM GND
3				
4	-	Rotational speed channel 2	-	Rotational speed channel 2
5	GND (0 V)	GND (0 V)	GND (0 V)	GND (0 V)
6	+U _B	+U _B	+U _B	+U _B
7				
8	PWM rail joint	PWM rail joint	PWM rail joint	PWM rail joint
9	PWM U _B	PWM U _B	PWM U _B	PWM U _B
10	NTC+	NTC+	NTC+	NTC+
11	Rotational speed channel 1	Rotational speed channel 1	Rotational speed channel 1	Rotational speed channel 1
12	NTC-	NTC-	NTC-	NTC-

Assignment Harting connector HAN HPR, preferred type

If you decide to have our speed sensors assembled with cable protection and connectors, we recommend using the preferred types shown in the figure. The required materials are field-tested in large quantities and are always in stock. This guarantees the fastest delivery times with the best material availability and the lowest prices due to large purchasing volumes.

If you need help in finding the product you need, please contact our internal sales team at support@lenord.de or call +49 208 9963-215.

Your notes

This document and contents are the intellectual property of Lenord, Bauer & Co. GmbH. Without the written consent of Lenord, Bauer & Co. GmbH, the disclosure and forwarding to third parties as well as any exploitation of the contents, including the registration of intellectual property rights, is prohibited.

Lenord, Bauer & Co. GmbH	Lenord+Bauer Italia S.r.I.	Lenord+Bauer USA Inc.	Lenord+Bauer
		32000 Northwestern Highway	Automation Technolo
Dohlenstraße 32	Via Gustavo Fara, 26	Suite 150	Block 42, Room 302,
46145 Oberhausen	20124 Milano	Farmington Hills, MI 48334	201206 Shanghai
Germany	Italy	USA	China
Phone +49 (0)208 9963-0	Phone +39 340 1047184	Phone +1 248 446 7003	Phone +86 21 50398
www.lenord.de	www.lenord.com	www.lenord.com	www.lenord.cn

utomation Technology (Shanghai) Co.,Ltd. lock 42, Room 302, No.1000, Jinhai Road 01206 Shanghai hina hone +86 21 50398270